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Abstract. Introducing internal damping in multibody system simulations is important as real-life systems usually exhibit this type
of energy dissipation mechanism. When using an inertial coordinate method such as the absolute nodal coordinate formulation,
damping forces must be carefully formulated in order not to damp rigid body motion, as both this and deformation are described by
the same set of absolute nodal coordinates. This paper presents an internal damping model based on linear viscoelasticity for the
absolute nodal coordinate formulation. A practical procedure for estimating the parameters that govern the dissipation of energy
is proposed. The absence of energy dissipation under rigid body motion is demonstrated both analytically and numerically.
Geometric nonlinearity is accounted for as deformations and deformation rates are evaluated by using the Green–Lagrange
strain–displacement relationship. In addition, the resulting damping forces are functions of some constant matrices that can
be calculated in advance, thereby avoiding the integration over the element volume each time the damping force vector is
evaluated.
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1. Introduction

The importance of damping in mechanical engineering is well known. Almost every mechanical system
experiences some damping arising from various sources. For instance, mechanism and machine joints
develop friction and damping to an extent dependent on the way connections are designed. Bearing
supports in rotordynamics introduce so-called “external damping” in the system. Proper operation of
the rotor occasionally depends strongly on the way such damping has been modelled at the machine
design stage. There is also “internal damping”, which results from the hysteresis loops some materials
undergo when subjected to alternative stresses. In the past, machines and mechanisms were designed on
the assumption that the different parts of the system would all be rigid. Therefore, no internal damping
had to be modelled. In recent years, the complexity of machine solicitation (high-speed machines, very
flexible and light components, etc.), requires that some parts or even the whole machine be assumed
flexible in order to obtain realistic simulated results. In order to ensure adequate accuracy, the flexibility
of the system and the way the different parts of the machine dissipate energy through hysteresis loops
should therefore be properly modelled.

Because the hysteretic damping effect is generally small relative to all other damping effects arising
in a machine, it should be considered when one or more of the following conditions occur:
• The mechanism operates in vacuum, so no damping due to aerodynamic drag is to be expected.
• Hysteretic damping is significant (e.g. in plasticized materials) as compared to all other damping

forms in the machine (damping in the joints, etc.).
• Hysteretic damping governs the dynamics of the system.
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As stated above, internal damping controls the dynamic behavior of the system in some cases. Such
is the case with the Short Electrodynamic Tether (SET) problem studied by Valverde et al. [1]. In
this system, a long rod with a tiny cross-section is rotated about its longitudinal axis in outer space
(vacuum). The motion is transferred by torsion to the whole system. This problem is similar to that
of an unbalanced rotor except that large deformations are expected. In such a case, in the absence of
other damping sources, aerodynamic drag and joints generating damping, hysteretic damping can be
substantial. If the system is modelled without consideration of hysteretic damping, this configuration
is stable at any angular velocity applied to the system. On the other hand, because the rod may suffer
alternative stresses, the model should incorporate internal damping. In such a case, the system seems
to be unstable above an angular velocity called the “critical velocity”, which is approximately equal to
the first bending natural frequency of the system. Modelling internal damping is therefore essential to
accurately reproduce the behavior of the system. It has been proven in [1] also, the dynamics of the
system above the critical velocity is governed by geometric nonlinearity in the thin rod. It is therefore
essential to construct a geometrically nonlinear internal damping force model.

Hysteretic damping can also be important in checking a dynamic flexible model against experimental
data when hysteretic damping is substantial. Under these considerations, the results can be rather
disparate unless an appropriate internal damping force model is introduced in the simulation procedure
as it is almost impossible to eliminate dissipation from the prototype in the laboratory.

A number of formulations have been developed over the past 30 years to account for flexible parts in
mechanisms. One of the most frequently used is called the Floating Reference Frame approach [2, 3],
which considers small deformations measured from a floating frame that describes rigid body motions
and is connected to the body via a set of reference conditions. When large deformations occur in the
flexible parts of the mechanism, the previous formulations are no longer appropriate. In such a case,
geometric nonlinearity must be taken into account in order to properly manage such deformations.
Several formulations have recently been developed in order to improve the simulation stage of these
problems. One is the Large Rotation Vector approach, proposed by Simo and Vu-Quoc [4], this is a
finite element-like approach used in some finite element commercial packages. It uses global positions
of the finite element nodes and an incremental procedure to update nodal rotations. One other approach
frequently used to analyze large deformations is the Absolute Nodal Coordinate formulation (ANCF) [2,
5], which uses global displacements and slopes of the finite element nodes, so no rotation or incremental
procedure is needed. This formulation produces a constant mass matrix, so no Coriolis or centrifugal
forces are involved. However, it generates a highly nonlinear coordinate-dependent elastic force vector.
This formulation is quite recent, so it has generated little literature on damping. Takahashi et al. [6]
introduced a Rayleigh proportional damping matrix on the assumption that deformations within each
finite element are small. Also, the nodal coordinates are split into two groups that are used to characterize
rigid body motions and small deformations, respectively. The latter can be expressed as the product of
a constant stiffness matrix and a small deformation set of coordinates when computing bending forces.
Axial forces cannot be simplified in this way owing to the structure of the elastic forces involved [6]. At
this point, the constant mass matrix and the constant bending stiffness matrix are used to evaluate the
proportional damping matrix. With this procedure, no large deformations within an individual element
can be considered; otherwise, the damping forces are inaccurately evaluated (their calculation is based on
the assumption that deformations within each finite element are small) and, more importantly, rigid body
motions in the element are also damped. The simplified elastic force vector used elsewhere [6] resolves
axial and bending deformations, which is unfeasible with large deformations. Therefore, computing
large deformations in the previous formulation entails using a vast number of finite elements. Yoo
et al. [7] used a proportional damping approach to model external damping and checked their results



www.manaraa.com

An Internal Damping Model 349

against experimental data. They found a good consistency even with large oscillations in a cantilever
beam. The number of elements for small oscillations was fairly small but that for large oscillations was
considerably increased. In addition, large oscillations do not necessarily imply large deformations [8],
so, strictly speaking, this method has not been experimentally checked with large deformations, but
only with large displacements and rotations in different sections of the beam.

Shabana and co-workers [9, 10] developed a continuum mechanics approach to compute the elastic
forces in a straightforward, unique manner for any finite element in the ANCF (2D/3D beams and plates).
The model allows large deformations to be considered within every finite element, so simulating large
deformation does not require the use of a vast number of finite elements. An internal damping force
model based on the continuum mechanics approach would be more useful, straightforward and accurate
than the previous methods [6, 7] with a view to modelling internal damping. For this purpose, the
hysteretic material must be assimilated to an equivalent viscoelastic material (Kelvin-Voigt law [11]).
This approximation is widely used in the field of mechanical vibrations.

In this work, we developed one such internal damping model for generic finite element systems
(viz. 3D beams and plates). In order to efficiently evaluate the damping forces involved, an invariant-
based algorithm similar to a previous one presented in [12] for elastic forces was developed. As shown
elsewhere [12], the computational cost of the simulations can be considerably decreased.

This paper is structured as follows: Section 2 provides a background on the absolute nodal coordinate
formulation in relation to the continuum mechanics approach. Section 3 explains the formulation of
the continuum mechanics-based internal damping forces. Section 4 demonstrates a salient feature of
this formulation: rigid body motions induce no dissipation. Section 5, discusses several examples of
problems that are tested analytically and by comparison with other, well-established methods. Finally,
some interesting conclusions are drawn and future projects are outlined.

2. Background on Absolute Nodal Coordinate Formulation

The absolute nodal coordinate formulation is a non-incremental nonlinear finite element procedure for
studying flexible bodies that experience large rotations and large deformations [5]. All nodal coordinates,
which include the global positions of nodes and global slopes, are referred to an inertial frame. Hence,
the nodal variables contain the information of rigid body motions and deformations. In this formulation,
the global position of an arbitrary point in element j of body i is interpolated as follows:

ri j = Si j ei j , (1)

where Si j is the shape function for element i j and ei j the element coordinate vector. Each element
coordinate vector contains a set of nodal coordinate vectors. For instance, beam elements formulated
with two nodes contain two nodal coordinate vectors [9, 10], that is, there is a coordinate vector associated
to each element node. Thus, node k of element j in body i (Figure 1) is defined by the following vector

ei jk =
[

ri jk T ∂r
∂x

i jk T
∂r
∂y

i jk T
∂r
∂z

i jk T
]T

, (2)

where ri jk T
is the global position vector of node i jk, and x , y and z are the element parameters in the

undeformed configuration. For a quadrilateral plate/shell element [13], the element coordinate vector
contains four nodal coordinate vectors. If the nodes are designated k, l, m and n, then the element
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Figure 1. Nodal coordinates in a deformed beam element.

coordinate vectors can be expressed as

ei j =
[
ei jk T

ei jl T
ei jm T

ei jnT
]T

. (3)

Equations of motion for the element are typically obtained by using analytical mechanics methods
such as those based on Lagrange equations. The kinetic energy can be calculated in a very straightforward
manner that produces a constant mass matrix thanks to use of inertial coordinates [2]. By using the
isoparametric property of the element, the kinetic energy can be integrated in a regular domain as follows

T = 1

2

∫

Ve

ρ ṙTṙ dVe = 1

2

∫

V
ρ ṙTṙ |J| dV, (4)

where ρ is the material density, Ve the volume of the element, V that in an undeformed configuration
and |J| the Jacobian of the mapping between the reference and a straight configuration. The use of
the mapping allows one to perform the integration over a regular straight domain. The elastic energy
can be evaluated via a continuum mechanics approach, using the nonlinear Green–Lagrange strain–
displacement relationship to account for nonlinear effects. Thus, the elastic energy is integrated as
follows:

U = 1

2

∫

Ve

σ : ε dVe = 1

2

∫

V
σ : ε |J| dV, (5)

where σ is the second Piola–Kirchhoff stress tensor and ε the Green–Lagrange strain tensor. The strain
tensor can be expressed as

ε = 1

2

[
∂r
∂r0

T ∂r
∂r0

− I
]

, (6)

where r0 is the location of an arbitrary material point (i.e. a point in the reference configuration). By
using the chain rule and the mapping between the real configuration and the straight configuration,
the strain tensor can be shown to only involve first-order derivatives with respect to coordinates in the
undeformed configuration:

∂r
∂r0

= ∂r
∂x

[
∂r0

∂x

]−1

, (7)
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where

∂r
∂x

= [
S,x e S,ye S,ze

]
, (8)

and

∂r0

∂x
= [

S,x e0 S,ye0 S,ze0
]
. (9)

In Equations (8) and (9), S,α = ∂S/∂α (α = x, y, z) is used to denote the partial derivative of the
shape function S with respect to parameter α. The nodal coordinate vector, e0 describes the reference
configuration. Note that all stresses in the reference configuration, which can be curved or straight, are
zero. Elastic deformations can be expressed as follows [12]:

ε11 = 1

2

(
eTS,1

TS,1e − 1
)

ε22 = 1

2

(
eTS,2

TS,2e − 1
)

ε33 = 1

2

(
eTS,3

TS,3e − 1
)

ε12 = 1

2
eTS,1

TS,2e ε13 = 1

2
eTS,1

TS,3e ε23 = 1

2
eTS,2

TS,3e

, (10)

where the subscript “α” denotes partial derivative with respect to r0α
(α = 1, 2, 3). As shown elsewhere

[12], the elastic force vector can be evaluated as a function of a set of constant matrices that are integrated
once in advance at the pre-processing stage.

3. Formulation of Damping Forces

Accounting for the damping effect is an important issue in multibody systems as every mechanism
in real life exhibits some dissipation of energy from various sources. Some approaches [6, 7] have
been successfully used to account for dissipation arising from an external source such as friction with
a circumventing fluid. However, such approaches fail to reproduce internal damping as rigid body
motions are also damped. Thus, an effective model for internal damping should dissipate energy only
if the system experiences some deformation, i.e. damping forces should be zero for every undeformed
configuration of the system. This issue is addressed later on.

Proportional damping makes sense when modal mass and stiffness matrices are available; however,
this is not the case with many multibody system formulations, such as ANCF. Moreover, if one fails
to provide a means for separating motion due to deformation from global motion, then the model will
damp the rigid body motions of the system [6].

3.1. OBTAINING DAMPING FORCES FROM A RAYLEIGH DISSIPATION FUNCTION

One of the most widely used approaches for introducing damping into a system is the development of
a Rayleigh dissipation function. Such a function allows systematic derivation of dissipative forces by
partial differentiation with respect to the generalized velocities. The idea behind the dissipation function
comes from the virtual work done by damping forces as shown in this section. If one assumes damping
forces to be proportional to the velocity and to act in opposite direction as the velocity vector, then

F = −cṙ, (11)
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where F is the damping force vector and c can be a function of r in general. The virtual work done by
these forces can be calculated by integrating over the solid volume:

δW =
∫

Ve

Fδr dVe =
∫

Ve

F
n∑

i=1

∂r
∂qi

δqi dVe =
n∑

i=1

Qiδqi , (12)

where qi (i = 1, 2, . . . , n) are the generalized coordinates of the system. Equation (11) can be used
together with the following relation

∂r
∂qi

= ∂ ṙ
∂ q̇i

, (13)

in order to obtain a closed expression for the Rayleigh function [14]. Thus, one can define the generalized
damping forces of Equation (12) as follows:

Qi = −∂ Fd

∂ q̇i
, (14)

where Fd is the Rayleigh dissipation function, which has units of power, and can be written as

Fd = 1

2

∫

Ve

cṙ2 dVe. (15)

The Rayleigh function is a quadratic function of the velocities and, in general, can be dependent on the
position as c can vary from point to point within the solid. Equation (15) assumes that the motion of one
point does not lead to a dissipative force on another point. There is no need to impose this restriction,
so more general Rayleigh functions can be defined. In this work, we used this approach to develop an
appropriate Rayleigh function for obtaining consistent damping forces.

3.2. DAMPING FORCES IN THE ABSOLUTE NODAL COORDINATE FORMULATION

Internal damping models for beams or plates in the field of vibrations, are usually based on viscoelasticity
concepts [15]. Such models are designed for simple stress states such as bending or torsion by including
a dissipation factor. However, damping models based on linear viscoelastic relations can be generalized
to multiaxial stress states. One should bear in mind that the response of materials to deviatoric and
dilatational excitations are different and so should be the dissipation factors relating tensions and time
derivatives of strains as a result [16]. For this reason, we used the following relation in the model:

si j = 2Gdi j + 2Gγdḋ i j

σi i = 3K εi i + 3Kγsε̇i i
, (16)

where si j and di j are the deviatoric stress and strain tensors, G the shear modulus of the material, σi i

and εi i are the dilatational stress and strain, respectively, K the bulk modulus of the material, and the
over-dot denotes time derivative. γs and γd in Equation (16) are the dissipation factors associated to
dilatational and deviatoric stresses, respectively.

The deviatoric stress tensor can be obtained by differentiating the volume-preserving part of the strain
energy with respect to Cauchy–Green strain tensor as explained in [17]. When a material description is
used, as it is the case of the internal force model used in this paper, the expression of the deviatoric and
volumetric tensors are rather involved. However, large strains do not often appear in most of multibody
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system dynamics applications. It is reasonable, in such a case, to assume a simpler description of the
deviatoric part of the stress and strain tensors as follows:

σi j = 1

3
σi iδi j + si j ,

εi j = 1

3
εi iδi j + di j .

(17)

The use of Equation (17) confines the model to the case of large rotations and large deformations
but small strains, which in fact is very common in multibody applications. If large strains are expected,
exact expressions for the deviatoric and the volumetric components are required [17, 18]. According to
Equation (17), the constitutive equations can be written as follows:

σi j = 2Gεi j +
(

K − 2G

3

)
εi iδi j

︸ ︷︷ ︸
elastic

+ 2Gγdε̇i j +
(

Kγs − 2Gγd

3

)
ε̇i iδi j

︸ ︷︷ ︸
viscous

, (18)

where δi j is the Kronecker delta function. The dissipated power, Pd, can be calculated in the same
manner as the strain energy. Thus, the part of the stress tensor corresponding to damping is multiplied
by the time derivative of the strain tensor to obtain the power dissipated per unit volume:

Pd = 1

2

∫

Ve

σviscous : ε̇ dVe = 1

2

∫

V
σviscous : ε̇ |J| dV . (19)

Recalling Equations (10), it is easy to see that the time-derivative of the strains can be written as follows:

ε̇i j = 1

2
ėT

(
ST

,i S, j + ST
, j S,i

)
e (i, j = 1, 2, 3). (20)

Substituting Equation (20) into Equation (19) reveals that the dissipated power is a quadratic form of
the generalized velocity vector. In the following expression, the dissipated power in Equation (19) has
been assumed to be a Rayleigh function and damping forces obtained by partial differentiation with
respect to ė:

Qd = −
(

∂ Pd

∂ ė

)T

. (21)

The corresponding expression for an arbitrary flexible element is

Qd = −1

2

∫

Ve

[(
Kγs + 4Gγd

3

)(
2ε̇11

∂ε̇11

∂ ė

T

+ 2ε̇22
∂ε̇22

∂ ė

T

+ 2ε̇33
∂ε̇33

∂ ė

T)

+ 4Gγd

(
2ε̇12

∂ε̇12

∂ ė

T

+ 2ε̇13
∂ε̇13

∂ ė

T

+ 2ε̇23
∂ε̇23

∂ ė

T)
+

(
2Kγs − 4Gγd

3

)(
ε̇11

∂ε̇22

∂ ė

T

+ ε̇22
∂ε̇11

∂ ė

T

+ ε̇11
∂ε̇33

∂ ė

T

+ ε̇33
∂ε̇11

∂ ė

T

+ ε̇22
∂ε̇33

∂ ė

T

+ ε̇33
∂ε̇22

∂ ė

T)]
dVe = −C(e)ė, (22)

where C (e) is a coordinate-dependent matrix. At this point, there are two parameters, the dissipation
factors, γs and γd, that are left to be assigned a value. This issue is addressed in a subsequent section.
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After simple algebraic manipulations, the damping matrix has the following expression

C(e) = 1

2

∫

Ve




(
2Kγs + 8Gγd

3

) (
3∑

α=1

ST
,αS,αeeTST

,αS,α

)

+ 2Gγd




3∑
α=1

3∑
β=1
β �=α

ST
,αS,βeeTST

,αS,β + ST
,αS,βeeTST

,βS,α




+
(

2Kγs − 4Gγd

3

)



3∑
α=1

3∑
β=1
β �=α

ST
,αS,αeeTST

,βS,β





 dVe. (23)

The damping matrix results in a nonlinear function of the nodal coordinate vector. However, the large
expression in Equation (23) does not require the integration over the volume of the element for each
evaluation of the damping forces as the nodal coordinates can be factored out of the integrals. In fact, the
ensuing expressions for the components of the damping matrix are polynomial functions of the nodal
coordinates and their coefficients can be integrated in advance. Once done, the integral over the volume
of the element will no longer be required. This way, evaluating the damping force requires only a few
arithmetic operations.

3.2.1. Evaluation of Damping Forces
Damping forces should be evaluated in a systematic manner. Based on the form of the damping matrix
in Equation (23) each of its components can be evaluated as a quadratic form of the nodal coordinate
vector. To this end, component i j in the product AeeTB, where A and B are two arbitrary matrices, is
developed as follows:

(AeeTB)i j =
∑

k

∑
l

Aikekel Bl j = eTDi j e, (24)

where Di j is a matrix built as the product of the transpose of row i in matrix A and row j in the transpose
of matrix B, i.e.

Di j = (Ai )
T (BT) j , (25)

Ai being row i in matrix A. By using Equations (24) and (25), the matrix Di j corresponding to each
term in the summation of Equation (23) can be added to obtain matrix Ci j as follows:

Ci j = 1

2

∫

Ve




(
2Kγs + 8Gγd

3

)(
3∑

α=1

(
ST

,αS,α

)T
i

(
ST

,αS,α

)
j

)

+ 2Gγd




3∑
α=1

3∑
β=1
β �=α

(
ST

,αS,β

)T
i

(
ST

,βS,α

)
j
+ (

ST
,αS,β

)T
i

(
ST

,αS,β

)
j




+
(

2Kγs − 4Gγd

3

) 


3∑
α=1

3∑
β=1
β �=α

(
ST

,αS,α

)T
i

(
ST

,βS,β

)
j





 dVe. (26)
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Matrix Ci j allows the coefficients of the damping matrix to be calculated as follows:

(C (e))i j = eTCi j e (27)

As stated above, these matrices are obtained by integrating over the volume of the element at the pre-
processing stage and stored in order to evaluate the damping forces during the simulation stage. For this
reason, matrices Ci j have been called invariant damping matrices. The matrix structure of the invariant
allows the information required to evaluate the damping forces to be stored in a systematic manner.
From Equation (23) it can be easily shown that the damping matrix is symmetric, so only invariant
matrices corresponding to the diagonal and the lower/upper triangle of the damping matrix will be
needed. Moreover, the block structure of the element shape function matrix, S, substantially reduces the
amount of data that has to be stored since each block has only a single associated characteristic value.
The invariants of the damping forces, together with those of the elastic forces [12] and the mass matrix,
constitute the set of invariants to be calculated during the pre-processing.

3.2.2. Jacobian of the Damping Forces and Dissipated Power
The use of implicit integrators requires calculating the Jacobian of the equation of motion. The Jacobian
matrix can be calculated numerically from difference formulae. However, numerical differentiation
involves a vast effort as it requires a number of function evaluations. It is always more convenient to
analytically differentiate the Jacobian if it is possible. The absolute nodal coordinate formulation leads
to a very simple expression for the Jacobian of the elastic forces [12]. The Jacobian of damping forces
can also be analytically obtained in a very straightforward manner.

The damping force vector depends on both the nodal coordinates by virtue of geometrically nonlinear
deformation being considered and also on the nodal velocities. For this reason, the partial derivatives
with respect to the nodal coordinates and nodal velocities are required to evaluate the Jacobian of the
equations of motion. Based on the simple structure of the invariant formulation described in the previous
sub-section, the partial derivative with respect to the nodal coordinates can be evaluated without the
need to integrate over the element volume:

(
∂Qd

∂e

)

ik

= −
Nnc∑
j=1

Nnc∑
m=1

em
(
Ci j

mk + Ci j
km

)
ė j , (28)

where Ci j
mk is the component in row m and column k of the invariant matrix corresponding to position

i j in the damping matrix C(e) and Nnc is the number of absolute nodal coordinates. On the other hand,
the partial derivative with respect to the nodal velocities can be written as:

(
∂Qd

∂ ė

)

ik

= −eTCike. (29)

The availability of an exact expression for the partial derivatives of the damping force vector is a valuable
feature as it simplifies the evaluation of the Jacobian of the equations of motion. In fact, evaluating the
Jacobian is one of the most numerically expensive tasks when using an implicit integrator. In addition,
numerical differentiation can result in numerical errors and decrease the convergence rate of the iterative
procedure used as a consequence.
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Finally, the dissipated power in the proposed internal damping model can be evaluated from the
invariants as follows:

Pd = 1

2
ėTC(e)ė. (30)

3.3. DETERMINATION OF DAMPING COEFFICIENTS

Experimental values for the damping factors γs and γd can be found in the literature [11]; occasionally,
however, no data for the specific material used in the model is available. In such a case, one can determine
the factors by standard material testing of ‘rubber-like’ materials (with the viscoelastic material model),
which requires experimental work. Dissipation factors can thus be obtained through testing and the
application of simple formulae relating the coefficients with some parameters characteristic of the test
such as the load application frequency, the boundary conditions of the experiment, etc. [19]. As a result,
the values of these viscous damping factors will depend on the frequency range where the tests are
conducted and the original problem is expected to operate. In any case, dependence is not too strong as
a plot of the viscous damping factor versus frequency is an almost horizontal line in the vicinity of the
experimental frequency [19].

In any case, it would be useful to find approximate analytical values for the dissipation factors. Hence,
no experimental work is needed and the simulation stage can be relieved. In this section, an analytical
approximate expression for the dissipation factors is presented. Its derivation is quite straightforward
and, although it is an approximation, it provides good results and allows the system to be simulated
without the need for any experimental testing.

As stated in the Introduction, a Kelvin–Voigt viscoelastic material model has been used to characterize
hysteretic behavior, since, as shown in the literature on damped mechanical vibrations [19, 11], a pure
hysteretic model cannot be used in time simulation procedures (complex numbers force frequency
domain analysis). Let us assume a unidirectionally deformed material. The hysteretic material, in this
case, can be characterized adding an imaginary part to the constant that relates strain and stress (the
Young modulus) as follows:

σ = E(1 + iδ)ε, (31)

where i = √−1 and δ is the hysteretic damping coefficient. Because this model cannot be used in
formulations intended for the simulation of problems in time, an equivalent viscoelastic material model
is used and represented by the following expression for the same unidirectional problem:

σ = E(ε + γ ε̇), (32)

where γ is the viscoelastic damping factor and the over-dot denotes derivation with respect to time.
Let us assume that the unidirectional problem at hand is the vibration of a beam subjected to a set of
boundary conditions at its ends. As shown elsewhere [11, 20], the critical viscoelastic damping factor
for the system is given by

γcrit = 2

ωn
, (33)
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where ωn is one of the natural frequencies of the vibrating system (with the corresponding boundary
conditions). At this point, it is usual to assume the viscous damping constant to be a fraction ξ of
critical damping. In order to calculate γs and γd, we seek for simple configurations of our system
giving rise to stress expression similar to that of Equation (32). In such a case, critical damping can be
calculated in the same way as in Equation (33). We shall henceforth call these simple configurations
“test problems”. This procedure was previously applied by Valverde et al. [21] to a Euler beam. In their
model, axial/bending and torsion forces were uncoupled. Therefore, the damping factors corresponding
to each of these forces do not depend on each other and can be calculated as explained above (pure
axial/bending test problem for γs and pure torsion problems for γd). However, because we have used a
continuum mechanics approach to derive the internal forces of the ANCF elements, axial, bending and
torsion forces are fully coupled. Therefore, γs and γd cannot be calculated separately as they must bear
a mutual relation that will be established later on in this section.

Two important facts must be taken into account when computing the analytical equivalent viscous
damping factors, namely: (1) the viscous damping factor depends on the frequency of operation of the
system, not the original hysteretic material; and (2) the boundary conditions affect the calculation of
the critical viscous damping. Here, we propose to calculate the damping factors, γs and γd by using
appropriate equivalent test problems that allow critical damping to be computed analytically. Because
the viscous damping coefficients are frequency-dependent, the analyst must be careful and use them
over operational range near the frequency of calculation, which should be the nearest natural frequency
of the system to the frequency of application of the loads. Calculating critical damping entails imposing
a set of boundary conditions to the test problem. At this point, it is recommended to use boundary
conditions as similar as possible to those of the original problem.

Based on Equation (18), a pure deviatoric problem (pure torsion) only implies γd. Taking into account
that axis x in the finite element frame points in the direction of the element center-line, a pure torsion
problem will obey the following stress–strain relations [22]:

σxx = σyy = σzz = σyz = 0,

σxy = 2Gεxy + 2Gγdε̇xy, (34)

σxz = 2Gεxz + 2Gγdε̇xz,

where the following equality for the shear stresses must be fulfilled:

σxy = −σxz . (35)

Taking into account that shear stresses have the same form as Equation (32), factor γd can be calculated
as a fraction of the critical damping, which can be easily determined by using an expression similar to
(33) as

γ crit
d = 2

ωd
n

, (36)

where ωd
n is the corresponding torsional natural frequency of the test problem (a configuration with

boundary conditions as similar as possible to those of the original problem). Finally, factor γd is estimated
as a fraction ξ of γ crit

d .
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On the other hand, a pure longitudinal problem (viz. axial loads or bending loads giving rise to stress
in the axial direction) in the direction x gives rise to the following stresses:

σxx �= 0, σyy = σzz = σxy = σxz = σyz = 0, (37)

where σxx depends on both γs and γd, see Equation (18). We seek for an expression of σxx equivalent
to that of Equation (32):

σxx = Eεxx + Eγxx ε̇xx . (38)

In such a case, the factor γxx can be easily calculated in the same way as γd, i.e. as a fraction ξ of the
critical damping given by

γ crit
xx = 2

ωxx
n

, (39)

where ωxx
n is the natural frequency of the test problem concerned (a bending or axial vibration frequency

depending on wether bending or axial forces, respectively, predominate in the original problem). Once
γ xx has been obtained from the test problem, the volumetric viscous damping factor γs can be obtained
equating σxx with (38). Previously, σxx must be expressed in terms of εxx and ε̇xx . A relation of εyy , εzz

and their time derivatives with εxx and its time derivative is therefore needed. Let us use the following
expressions from Equation (37):

σyy = 0 =
(

K + 4G

3

)
εyy +

(
K − 2G

3

)
(εxx + εzz)

+
(

γs K + 4γdG

3

)
ε̇yy +

(
γs K − 2γdG

3

)
(ε̇xx + ε̇zz) , (40)

σzz = 0 =
(

K + 4G

3

)
εzz +

(
K − 2G

3

)
(εxx + εyy)

+
(

γs K + 4γdG

3

)
ε̇zz +

(
γs K − 2γdG

3

)
(ε̇xx + ε̇yy). (41)

A combination of factors (εyy +εzz) and (ε̇yy + ε̇zz) can be obtained in terms of a combination of εxx and
ε̇xx provided γs and γd are identical. Instead of assuming γs = γd, the following idea can be used: let ε

be the deformation of a solid under a set of applied loads, which in general can usually be considered
a periodic function in time with a characteristic frequency ω. In such a case, the deformation can be
expressed as [11]

ε � f (ωt), (42)

so:

ε̇ � ω f (ωt) � ωε. (43)

This allows, the following approximation to be made

γ ε̇ � γωε � 2ξ
ω

ωn
ε. (44)
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Because the system is expected to operate at frequencies similar to ωn and ξ < 0.1, the following
inequality can be expected to hold:

γ ε̇ � ε, (45)

so the time derivatives of the deformations in Equations (40) and (41) can be assumed negligible. In
such a case, the factor (εyy + εzz) can be expressed in terms of εxx as

(εyy + εzz) = −3K − 2G

3K + G
εxx . (46)

By differentiating Equation (46) with respect to time one obtains

(ε̇yy + ε̇zz) = −3K − 2G

3K + G
ε̇xx . (47)

Substituting relations (46) and (47) into the expression of σxx given by (18), the following is obtained

σxx = 9K G

3K + G
εxx + γs + 2γd

3

9K G

3K + G
ε̇xx . (48)

A comparison of Equations (38) and (48), allows the following relation between γxx , γs and γd to be
formulated:

γxx = γs + 2γd

3
, (49)

In summary, the process involves the following steps: (1) choosing a test problem with boundary
conditions as similar as possible to those of the original problem and simple enough to allow the natural
frequencies to be determined. (2) Calculating γd by using a torsional natural frequency suited to the
frequency of application of torsional forces. Equation (36) must be used for this purpose. (3) Calculating
γxx by using Equation (39). A bending or axial natural frequency must be chosen that should be as close
as possible to that of the applied forces. (4) Finally, calculating γs by using Equation (49). An appropriate
factor ξ must be chosen by the analyst for both viscous damping constants suited to the nature of the
target problem.

By way of example, the problem of the SET can be used [1]. This configuration is similar to a
clamped beam with a vast mass at its free end. In this problem, the clamped end its subjected to a
constant angular velocity and the structure transversal vibration is mainly due to bending forces. In such
a case, γxx should be calculated by using the first bending natural frequency of the clamped beam with
a mass at its free end with conservation of the boundary conditions. γd is calculated by using the first
torsional natural frequency for the same configuration.

For more general multibody problems, it is well known that the determination of the natural frequency
is a complex task, as it depends on the position of the system in time. Besides, the boundary conditions
of the flexible bars would also depend on the given position of the multibody system. In such a case, it
would be interesting to calculate the natural frequencies for different positions, the most different ones
in terms of boundaries for the flexible bars. Then, the analyst can decide if the range of frequencies is
large enough to consider a mean natural frequency along the motion of the mechanism. In any case, the
analyst must be aware of the approximate nature of the proposed calculation of the damping factors,
therefore, in some cases it would not be necessary to go to a very exact calculation of the natural
frequencies.
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4. Non Dissipation Under Rigid Body Motion

Multibody systems can experience deformations as well as rigid body motion. It is therefore essential
for all internal damping models not to dissipate energy under conditions of rigid body motion. In the
absolute nodal coordinate formulation, rigid body motion can be accomplished by using appropriate
shape functions (i.e. accurately representing rigid body motion [10, 13]). This however, does not ensure
that rigid body motions will not be damped out.

As can be inferred from Equation (22), the proposed internal damping model produces zero damping
forces if deformation rates are all zero, this is a result of all terms in equation being multiplied by a
component of the deformation rate tensor. Furthermore, when the Green–Lagrange nonlinear strain–
displacement relationship is used to measure deformations and deformation rates, deformation rates
are always zero for rigid body motion. This can be demonstrated by assuming the global position of an
arbitrary point in a body under rigid body motion to be described by the following expression:

r = R + Ax, (50)

where R is the global position of the point in the solid, A an orthogonal rotation matrix and x the position
of the arbitrary point in the body reference frame. Provided Equation (50) holds, the deformation gradient
can be expressed as follows:

J = ∂r
∂r0

= ∂r
∂x

[
∂r0

∂x

]−1

= AA−1
0 , (51)

where A0 is the constant orthogonal rotation matrix corresponding to the reference configuration. From
Equation (51), the time derivative of the Green–Lagrange strain tensor can be expressed as follows:

ε̇ = 1

2
(J̇

T
J + JTJ̇) = 1

2

(
A−1

0

)T
(Ȧ

T
A + ATȦ)A−1

0 . (52)

Because the rotation matrix, A, is orthogonal,

ATA = I. (53)

Differentiating both sides of Equation (53) once with respect to time therefore yields

Ȧ
T
A + ATȦ = 0, (54)

which coincides with the term in brackets on the right hand side of Equation (52). Thus, ε̇ is zero under
rigid body motion. Therefore, the requirement that no energy should be dissipated under rigid body
motion is automatically met if the nonlinear Green–Lagrange strain–displacement relationship is used
to evaluate the time derivatives of the strain tensor.

5. Numerical Examples

The proposed internal damping force model was validated by solving three numerical examples. In
the first example, the formulation was checked against a well-established reference frame formulation
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Figure 2. Cantilever beam subjected to a concentrated force at its free end.

based on natural coordinates [1, 3, 23] and substructuring [24] that accounts for geometric nonlinearity.
Small and large deformation problems were solved in order to compare the numerical results. In the
second example, the motion of a flexible beam was simulated in order to show that the translational
rigid body motion of the beam is not damped out. The third example involved rotating the previous
beam about one of its axes. In this simulation, rotational rigid body motion was not damped out.

5.1. EXAMPLE 1

The problem of a cantilever beam subjected to a concentrated load at its free end was analysed here.
The beam was modelled by using a total 16 three-dimensional beam elements based on absolute nodal
coordinates [10]. Figure 2 illustrates the problem at hand. The load was applied to the beam by starting
from zero and reaching a final value ftc at time tc. The length of the beam was assumed to be 5 m and
the cross-section to be square with h = w = 0.1 m (height and width). Also, the beam material was
assumed to have a Young’s modulus of 1.32×1011 N/m2 and a density 8245.2 kg/m3. As recommended
by Sopanen et al. [25], Poisson’s ratio was assumed to be 0 in order to avoid the inherent overly
stiff behavior of the beam element used [10]. Also, the damping factors, γs and γd were computed by
following the procedure described above. This entailed calculating the natural frequencies (torsion and
bending) of the beam. The first torsion natural frequency of the system was

ωd
n = α

√
CG

ρL2 Ip
, (55)

where α = π
2 for the boundary conditions at hand, C = 0.1406h4 is the torsion factor of a square cross-

section, G the shear modulus of the beam material and Ip = 2I the polar moment of the cross-section.
Therefore, if 5% of the critical damping is assumed, the deviatoric damping coefficient will be given
by expression (36). On the other hand, the first bending natural frequency of the system will be

ωb
n = β

√
E I

mL3
= ωxx

n , (56)

where β = 1.8752 for the boundary conditions at hand, I = h4

12 is the second moment of area of the
cross-section and m = ρh2L the beam mass. Parameter γxx is assumed the 5% of the critical one,
given by expression (39). Once γd and γxx have been determined, γs can be obtained from Equation
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Figure 3. Deflection of the beam tip (small deformations).

(49). First, a force small enough to cause small deformations is applied to the beam. The characteristic
values of the applied force were tc = 0.35 s and ftc = 300 N and the expected final sag of the beam
δ = 1.14×10−2.

As can be seen in Figure 3, the solutions provided by both procedures (ANCF and natural coordinate
formulation, NCF) were quite consistent. A total of 12 substructures were used to model the beam with
the natural coordinate formulation. At long simulation times, the deflection δ levelled off at the above-
described value, once vibration around the elastic equilibrium was damped out by internal damping
forces.

The force applied to the system was now increased, so the deformations experienced by the beam
could be assumed to be large (tc and ftc were assumed to be 0.6 s and 60 000 N, respectively). The
deflection of the free end of the beam was unknown a priori. The simulation results provided by the two
models (ANCF and NCF) are shown in Figure 4. Consistency was quite good and the final deflection
δ ≈ 20%L . Figure 5, which is a magnified view of Figure 4 around elastic equilibrium, reveals that

Figure 4. Deflection of the beam tip (large deformations).
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Figure 5. Deflection of the beam tip (magnified view of Figure 4).

both models dissipate energy in the same way: vibration around elastic equilibrium is damped out
similarly, so the periodicity of both solutions is identical. There is a small difference, about 0.5% of the
total deflection, which was also encountered in the problem involving small deformations and can be
ascribed to the different modelling scheme used in the two models.

5.2. EXAMPLE 2

The problem involves an upright flexible beam that is horizontally thrown in the absence of gravity
forces (the flying beam). This problem was previously studied by Takahashi et al. [6] to check their
Rayleigh-like damping model. Figure 6 illustrates the problem and the time dependence of the applied
load.

The beam was assumed to have a length L = 8 m, a cross-sectional area A = 0.0307 m2 and a
second moment of area I = 7.854 × 10−5 m4. The beam material was assumed to have a volumetric
density ρ = 7860 kg/m3 and a Young’s modulus E = 2.10 GPa. The beam, initially straight, was

Figure 6. The flying beam problem.
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Figure 7. Relative displacement between the center of mass and the tip of the flying beam.

discretized by using 8 two-dimensional shear deformable elements [9]. The position of the beam at time
t = 0 s coincided with the Y global axis, with one of the ends over the origin of the coordinate system.
Damping coefficients were computed from the first torsion and bending natural frequencies of a beam
with boundary conditions of free ends. The first natural torsion frequency of a free-free beam was used
to calculate the deviatoric damping coefficient, γd. The torsion natural frequency was given by Equation
(55), where, for the boundary conditions of this example, α = π and the constants C, G, Ip were defined
in the first example. If the beam cross-section is square, then: C = 0.1406h4 with h = √

A, G = E
2(1+ν) ,

where ν = 0, and Ip = 2I . Therefore, the deviatoric damping coefficient is given by Equation (36)
multiplied by the coefficient ξ = 0.05. On the other hand, the fundamental bending frequency is given
by Equation (56) with β = 4.732. Therefore, γxx is given by expression (39) with ξ = 0.05. Again, γs

can be calculated from Equation (49).
Figure 7 shows the relative displacement, δ, between the midpoint and a line connecting both ends of

the flying beam (Figure 6), which is a measure of deformation in the beam. As can be seen in the figure,
deformation peaked near the end of the loading process. After the load was removed, displacements
due to deformation decreased to near zero through dissipation resulting from internal damping forces.
The logarithmic decrement method [15] was used to estimate the damping ratio. Based on the results of
Figure 7, an average damping ratio of 0.0503, which is quite close to the 0.05 assumed was obtained.
This confirms that the criteria explained in Section 3.3 to estimate the dissipation factors provided the
expected results.

Figure 8 shows the velocity of the midpoint of the beam and the center of mass of a similar rigid
beam as a function of time. The figure shows how the velocity of the midpoint of the flexible beam
tends to that of the center of mass of the rigid beam. This is so because the momentum of the beam
must be preserved in absence of external forces and the only difference between both models are the
internal elastic and damping forces. Figure 8 therefore demonstrates that the proposed damping model
in the present paper does not affect rigid body translations.

Finally, Figure 9 shows the balance of energy in the flying beam problem. The kinetic and strain
energies of the beam are shown. Initially, while the load is being applied, the total energy increases.
Once the strain energy has been dissipated by the damping forces, the total energy reaches a constant
value corresponding to the constant velocity of the beam, which is in turn equal to the velocity of the
rigid beam case. The kinetic energy remains constant also because the proposed damping model only
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Figure 8. Velocity of the center of mass of the flying beam (rigid and flexible cases).

Figure 9. Balance of energy in the flying beam problem.

dissipates the strain energy of the flexible beam. After the strain energy is dissipated, the beam only
possesses kinetic energy due to rigid body translation.

The influence of the different damping ratios can be seen in Figure 10. As the damping ratio is
increased, the system is damped out faster and the frequency of vibration of the beam, which depends
on the damping ratio, decreases.

5.3. EXAMPLE 3

In the previous example, the translational motion of a flexible beam was used to show that the internal
damping model is dissipating no energy from the rigid body motion. In this example, an identical
conclusion is reached for a flexible beam subjected to pure rotation about an orthogonal axis passing
through one of its ends. Figure 11 depicts of the flexible beam and its boundary conditions.



www.manaraa.com

366 D. Garcı́a-Vallejo et al.

Figure 10. Influence of the damping ratio, ξ .

Figure 11. Flexible beam subjected to a concentrated moment.

The beam had the same properties as that of the previous example. A revolute joint between the
beam and a fixed reference was placed at one end. In order to estimate the damping parameters, the
fundamental frequencies of a hinged-free beam was used at a damping ratio of 0.05. The torsion
fundamental frequency used was that of Equation (55) for the cantilever beam problem and the bending
fundamental frequency for the hinged-free beam was that of Equation (56) with β = 3.932. Again,
the damping factors were evaluated as described in Section 3.3. The moment applied at t = 0 s was
5000 N m and removed after 2 s. Figure 12 shows the deflection of the free end of the beam as measured
in a local frame attached to the hinged end of the beam. As expected, the amplitude of the oscillations
start to decrease when the external concentrated moment cancelled.

In order to check that rigid rotation of the beam was not damped, a rigid beam with the same geometric
properties and density was studied. In this simulation, the nodal coordinates and nodal velocities of the
end node were used to calculate the velocity of rotation of the node. If the node position is expressed in
a polar coordinate system, then the angular coordinate can be expressed as follows:

θ = tan−1 r2

r1
, (57)

where r1 and r2 are the global coordinates of the node. From Equation (57), it follows that the time
derivative of the angular coordinate, θ , can be expressed as follows:

θ̇ = ṙ2r1 − ṙ1r2

r2
1 + r2

2

, (58)
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Figure 12. Deflection of the free end.

Figure 13. Angular velocity, θ̇ , of the end node.

Figure 13 shows the variation of the time derivative of the angular coordinate, θ̇ , of the free end of the
beam with the angular velocity of the rigid beam. As can be seen, the angular velocity of the rigid beam
increases linearly while the applied moment remains constant. When the applied moment cancels, the
angular velocity of the rigid beam remains constant. The time derivative of the angular coordinate of
the end node in the polar coordinate system exhibits a similar behavior. After oscillations are damped
out, θ̇ and the angular velocity of the rigid beam coincide as a result of the flexible beam rotating like
a rigid beam. As a consequence, the time derivative of the angular coordinate, θ̇ , at every point of the
flexible beam is the same and coincides with the angular velocity of the rigid beam. Therefore, some
time after the moment is removed, the flexible beam continues to rotate as a rigid body.

Finally, Figure 14 shows the variation of the elastic and kinetic energies of the rotating flexible beam
with time. As in the previous example, elastic energy is dissipated while deformation extinguishes.
After some time, the kinetic energy tends to a constant value corresponding to the kinetic energy of the
beam under rigid body rotation. In other words, the beam can rotate as a rigid body about the fixed end
without any dissipation of energy as rigid body motions are not damped out.
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Figure 14. Variation of the elastic and kinetic energies with time.

6. Conclusions

The main purpose of this paper was to develop an internal damping model for the absolute nodal coor-
dinate formulation, which is a recently reported multibody description for large deformation problems.
Properly formulating the model is essential as, in some practical cases, damping has a crucial influence
on the behavior of the system concerned. In addition, some recent damping models fail to provide a
close description of internal damping in the material as they dissipate energy during rigid body motions.

In this work, internal damping was modelled on the assumption that the material behaves as an
equivalent viscoelastic one, which is a common practice in engineering when time simulations are
required [11]. Also, viscous damping was adapted to a continuum mechanics approach in a system-
atic, straightforward manner. Elastic and damping forces were thus obtained in a similar way, taking
advantage of the presence of some invariant quantities that have to be calculated only once at the
pre-processing stage of the simulation [12].

Because damping forces are evaluated by using a continuum mechanics approach, geometric nonlin-
earity is taken into account. Also, the proposed damping model can be applied to large deformation prob-
lems as it involves no assumptions on deformations. Other damping formulations for the ANCF [6, 7]
require small deformations within each finite element and manipulation of elastic forces in order to
separate bending and axial deformations with a view to formulating a Rayleigh-like damping model;
this detracts from generality in such models.

Data for specific materials in relation to the viscous damping model used, which is based on two
material constants (γs and γd) have been reported elsewhere [11]. Even if the material used with the
model has not been characterized previously, the damping constants can be obtained by conducting
some simple experimental tests. When experimental work is unfeasible, the damping constants can
be calculated by using the proposed analytical approximation based on several basic test problems
involving vibration in a system under similar boundary conditions as the actual problem to be solved.
The results obtained by using these analytically obtained damping constants can be very useful at
an early stage in designing a mechanism. In fact, they allow damping factors to be accurately calcu-
lated with minimal effort. Accuracy is even greater if experimental data for the model concerned is
available.
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As shown by the first example, the proposed model provides good results relative to such a well-
established formulation as NCF with both small and large deformation problems. Non-dissipation in
rigid body motions was demonstrated both analytically and numerically.
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